The CNIB Hochhausen Prize for Excellence in Accessible Design in Engineering for People who are Blind or Partially Sighted.

Description:
The CNIB Hochhausen prize is intended to award excellence in electrical and computer engineering accessible design for the blind or partially sighted and to encourage students to incorporate accessibility into their design projects.

Definition: Accessible design involves the design of devices that can be fully utilized by people who are blind or partially sighted.

The long term goal is to encourage a new generation of electrical and computer engineers who are sensitive to issues related to accessible design, with a view to fostering innovative accessible devices and ensuring that accessibility is built into conventional devices.

Eligibility:
Students in the final year of their undergraduate education in electrical and computer engineering at the University of Toronto.

Nature of Design projects:
Students may select from the list of potential projects provided (Appendix A) or may design their own projects which need to be approved by the CNIB Hochhausen Committee to be eligible for this prize and financial support.

Prize Description:
The project that is judged the best in terms of both accessibility and engineering excellence by the prize committee will be awarded $1500 to be divided equally among members of the project team. The prize will be awarded by the CNIB Hochhausen Committee in conjunction with the professors of Engineering responsible.

Financial support:
Each project on accessible design is eligible to apply for financial support on presentation of a budget to the Professor of Engineering responsible. The value of the support will not exceed $500 per project. The amount granted will be at the discretion of the Professor of Engineering.
Appendix A

1. A talking DVD player that gives access to its menus.

2. A device that will read and speak LED displays as they change.

3. An accessible microwave oven where all elements of the display, including clock and timer, audibly announce themselves.

4. Can the gesture-based speech technology used by Apple in the iTouch and iPad be adapted to apply to the touch screens of domestic appliances and other touch screen devices not made by Apple?

5. A small device that could be attached to a light switch to emit a soft, audible click every 10 or 15 seconds to indicate that the light was on. Particularly useful for circuits where two separate switches can control the same light independently, and the orientation of the switch does not necessarily show if the light is on or off.

6. A way to provide audible information about a computer's screen prior to the boot-up of the operating system when the sound card becomes accessible - a sort of preboot-up screen reader to allow access to the computer's BIOS. No screen reader now provides this.

7. A talking heart/pulse rate/calories burned/blood pressure monitor for exercise routines. Alternatively, a way to make the display on a treadmill fully accessible to a blind person.

8. A handheld electronic mobility device that detects obstacles and drop-offs, and that can be adjusted to personal preferences for distance from obstacles and for the width and depth of the detection field.

9. An accessible digital set top box that will allow a blind person to navigate and set the on-screen menus for cable or satellite television.

10. A warning device to alert one when a stove element has been left on with no pot or pan on the element.

11. A miniature audible signalling locator activated by calling a number on a cell phone. The locator could be attached to a key ring, to a chair or table to which one wished to return or to the entrance to a home or apartment building so that when the locator is activated, the spot can be found.

12. An audible taxi meter that allows one to hear the amount of the payment.